Deep Learning

Improving Computational Science Throughput via Model-Based I/O Optimization (SciDAC SUPER-SDAV)

Machine learning-based probabilistic I/O performance models that take the background traffic, and system state into account while prediciting application performance on HPC system.

ML Assisted Equilibrium Reconstruction for Tokamak Experiments and Burning Plasmas

Deelop a framework for efficient and accurate equilibrium reconstructions, by automating and maximizing the information extracted from measurements and by leveraging physics-informed ML models constructed from experimental and synthetic solution databases to guide the search for the solution vector.

Neuromorphic Architecture Optimization for Task-Specific Dynamic Learning

.

Probabilistic Machine Learning for Rapid Large-Scale and High-Rate Aerostructure Manufacturing (PRISM)

he project goal is to develop a probabilistic ML framework – PRISM – to improve manufacturing efficiency and demonstrate the technologies on wing spars.

RAPIDS2:- SciDAC Institute for Computer Science, Data, and Artificial Intelligence

The objective of RAPIDS2 is to assist the Office of Science (SC) application teams in overcoming computer science, data, and AI challenges in the use of DOE supercomputing resources to achieve scientific breakthroughs.

RAPIDS:- A SciDAC Institute for Computer Science and Data

The goal of RAPIDS (a SciDAC Institute for Resource and Application Productivity through computation, Information, and Data Science) institute is to assist Office of Science (SC) application teams in overcoming computer science and data challenges in the use of DOE supercomputing resources to achieve science breakthroughs.