Sandeep Madireddy
Home
News
Team
Projects
Publications
Publications
Type
Uncategorized
Conference paper
Journal article
Book section
Date
2022
2021
2020
2019
2018
2017
2016
2015
Anirban Samaddar
,
Sandeep Madireddy
,
Prasanna Balaprakash
(2022).
Sparsity-Inducing Categorical Prior Improves Robustness of the Information Bottleneck
.
arXiv preprint arXiv:2203.02592
.
Cite
Jarrod Leddy
,
Sandeep Madireddy
,
Eric Howell
,
Scott Kruger
(2022).
Single Gaussian Process Method for Arbitrary Tokamak Regimes with a Statistical Analysis
.
arXiv preprint arXiv:2202.11557
.
Cite
Dhireesha Kudithipudi
,
Mario Aguilar-Simon
,
Jonathan Babb
,
Maxim Bazhenov
,
Douglas Blackiston
,
Josh Bongard
,
Andrew P. Brna
,
Suraj Chakravarthi Raja
,
Nick Cheney
,
Jeff Clune
,
Anurag Daram
,
Stefano Fusi
,
Peter Helfer
,
Leslie Kay
,
Nicholas Ketz
,
Zsolt Kira
,
Soheil Kolouri
,
Jeffrey L. Krichmar
,
Sam Kriegman
,
Michael Levin
,
Sandeep Madireddy
,
Santosh Manicka
,
Ali Marjaninejad
,
Bruce McNaughton
,
Risto Miikkulainen
,
Zaneta Navratilova
,
Tej Pandit
,
Alice Parker
,
Praveen K. Pilly
,
Sebastian Risi
,
Terrence J. Sejnowski
,
Andrea Soltoggio
,
Nicholas Soures
,
Andreas S. Tolias
,
Dario Urbina-Melendez
,
Francisco J.Valero-Cuevas
,
Gido M. van de Ven
,
Joshua T. Vogelstein
,
Felix Wang
,
Ron Weiss
,
Angel Yanguas-Gil
,
Xinyun Zou
,
Hava Siegelmann
(2022).
Biological Underpinnings for Lifelong Learning Machines: A Perspective
.
Nature Machine Intelligence
.
Cite
Allison McCarn Deiana
,
Nhan Tran
,
Joshua Agar
,
Michaela Blott
,
Giuseppe Di Guglielmo
,
Javier Duarte
,
Philip Harris
,
Scott Hauck
,
Mia Liu
,
Mark S Neubauer
,
others
(2022).
Applications and techniques for fast machine learning in science
.
Frontiers in big Data
.
Cite
Lang L Lao
,
Scott Kruger
,
Cihan Akcay
,
Prasanna Balaprakash
,
Torrin Bechtel
,
Eric Howell
,
Jaehoon Koo
,
Jarrod Leddy
,
Matthew Leinhauser
,
Yueqiang Liu
,
Sandeep Madireddy
,
Joseph McClenaghan
,
David Orozco
,
Alexei Pankin
,
D P Schissel
,
Sterling P Smith
,
Xuan Sun
,
Samuel Williams
(2022).
Application of machine learning and artificial intelligence to extend EFIT equilibrium reconstruction
.
Plasma Physics and Controlled Fusion
.
PDF
Cite
Mihailo Isakov
,
Mikaela Currier
,
Eliakin del Rosario
,
Sandeep Madireddy
,
Prasanna Balaprakash
,
Philip Carns
,
Robert B Ross
,
Glenn K Lockwood
,
Michel A Kinsy
(2022).
A Taxonomy of Error Sources in HPC I/O Machine Learning Models
.
arXiv preprint arXiv:2204.08180 (ACCEPTED at SC22)
.
Cite
A Ćiprijanović
,
D Kafkes
,
K Downey
,
S Jenkins
,
G N Perdue
,
S Madireddy
,
T Johnston
,
G F Snyder
,
B Nord
(2021).
DeepMerge – II. Building robust deep learning algorithms for merging galaxy identification across domains
.
Monthly Notices of the Royal Astronomical Society
.
Cite
Xiaofeng Dong
,
Nesar Ramachandra
,
Salman Habib
,
Katrin Heitmann
,
Michael Buehlmann
,
Sandeep Madireddy
(2021).
Physical Benchmarking for AI-Generated Cosmic Web
.
arXiv preprint arXiv:2112.05681
.
Cite
Sandeep Madireddy
,
Angel Yanguas-Gil
,
Prasanna Balaprakash
(2021).
Neuromodulated Neural Architectures with Local Error Signals for Memory-Constrained Online Continual Learning
.
Cite
Daniar H. Kurniawan
,
Levent Toksoz
,
Mingzhe Hao
,
Anirudh Badam
,
Tim Emami
,
and Sandeep Madireddy
,
Robert B. Ross
,
Henry Hoffmann
,
Haryadi S. Gunawi
(2021).
IONET: Towards an Open Machine Learning Training Ground for I/O Performance Prediction
.
Cite
Aleksandra Ciprijanovic
,
Diana Kafkes
,
Gregory Snyder
,
F Javier Sánchez
,
Gabriel Nathan Perdue
,
Kevin Pedro
,
Brian Nord
,
Sandeep Madireddy
,
Stefan M Wild
(2021).
DeepAdversaries: Examining the Robustness of Deep Learning Models for Galaxy Morphology Classification
.
arXiv preprint arXiv:2112.14299
.
Cite
Sandeep Madireddy
,
Nan Li
,
Nesar Ramachandra
,
James Butler
,
Prasanna Balaprakash
,
Salman Habib
,
Katrin Heitmann
(2021).
A Modular Deep Learning Pipeline for Galaxy-Scale Strong Gravitational Lens Detection and Modeling
.
Cite
Sandeep Madireddy
,
Ji Hwan Park
,
Sunwoo Lee
,
Prasanna Balaprakash
,
Shinjae Yoo
,
Wei-keng Liao
,
Cory D Hauck
,
M Paul Laiu
,
Richard Archibald
(2021).
$łess$i$greater$In situ$łess$/i$greater$ compression artifact removal in scientific data using deep transfer learning and experience replay
.
Machine Learning: Science and Technology
.
PDF
Cite
DOI
Mihailo Isakov
,
Eliakin del Rosario
,
Sandeep Madireddy
,
Prasanna Balaprakash
,
Philip Carns
,
Robert Ross
,
Michel Kinsy
(2020).
Towards Generalizable Models of I/O Throughput
.
Proceedings of the 10th International Workshop on Runtime and Operating Systems for Supercomputers
.
Cite
Romit Maulik
,
Arvind Mohan
,
Bethany Lusch
,
Sandeep Madireddy
,
Prasanna Balaprakash
,
Daniel Livescu
(2020).
Time-series learning of latent-space dynamics for reduced-order model closure
.
Physica D: Nonlinear Phenomena
.
Cite
Sandeep Madireddy
,
Angel Yanguas-Gil
,
Prasanna Balaprakash
(2020).
Multilayer Neuromodulated Architectures for Memory-Constrained Online Continual Learning
. *4th Lifelong Learning Workshops held as a part of thirty-seventh International Conference on Machine Learning (ICML 2020) *.
Cite
Mihailo Isakov
,
Eliakin del Rosario
,
Sandeep Madireddy
,
Prasanna Balaprakash
,
Philip Carns
,
Robert Ross
,
Michel Kinsy
(2020).
HPC I/O Throughput Bottleneck Analysis with Explainable Local Models
.
Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
.
Cite
Eliakin del Rosario
,
Mikaela Currier
,
Mihailo Isakov
,
Sandeep Madireddy
,
Prasanna Balaprakash
,
Philip Carns
,
Robert Ross
,
Kevin Harms
,
Shane Snyder
,
Michel Kinsy
(2020).
Gauge: An Interactive Data-Driven Visualization Tool for HPC Application I/O Performance Analysis
.
5th International Parallel Data Systems Workshop
.
Cite
A. Ćiprijanović
,
D. Kafkes
,
S. Jenkins
,
K. Downey
,
G. N. Perdue
,
S. Madireddy
,
T. Johnston
,
B. Nord
(2020).
Domain adaptation techniques for improved cross-domain study of galaxy mergers
.
Machine Learning and the Physical Sciences 2020 workshop held as a part of 34th Conference on Neural Information Processing Systems (NeurIPS)
.
Cite
Krishna Kenja
,
Sandeep Madireddy
,
Kumar Vemaganti
(2020).
Calibration of hyperelastic constitutive models: the role of boundary conditions, search algorithms, and experimental variability
.
Biomechanics and Modeling in Mechanobiology
.
Cite
Sandeep Madireddy
,
Prasanna Balaprakash
,
Philip Carns
,
Robert Latham
,
Glenn K Lockwood
,
Robert Ross
,
Shane Snyder
,
Stefan M. Wild
(2019).
Adaptive Learning for Concept Drift in Application Performance Modeling
.
48th International Conference on Parallel Processing (ICPP 2019)
.
Cite
Peihong Jiang
,
Hieu Doan
,
Sandeep Madireddy
,
Rajeev Surendran Assary
,
Prasanna Balaprakash
(2019).
Value-Added Chemical Discovery Using Reinforcement Learning
.
Machine Learning and the Physical Sciences 2019 workshop held as a part of 33rd Conference on Neural Information Processing Systems (NeurIPS)
.
Cite
Romit Maulik
,
Vishwas Rao
,
Sandeep Madireddy
,
Bethany Lusch
,
Prasanna Balaprakash
(2019).
Using recurrent neural networks for nonlinear component computation in advection-dominated reduced-order models
.
Machine Learning and the Physical Sciences 2019 workshop held as a part of 33rd Conference on Neural Information Processing Systems (NeurIPS)
.
Cite
Sandeep Madireddy
,
Ding-Wen Chung
,
Troy Loeffler
,
Subramanian KRS Sankaranarayanan
,
David N Seidman
,
Prasanna Balaprakash
,
Olle Heinonen
(2019).
Phase Segmentation in Atom-Probe Tomography Using Deep Learning-Based Edge Detection
.
Scientific reports
.
Cite
Kumar Vemaganti
,
Sandeep Madireddy
,
Sayali Kedari
(2019).
On the inference of viscoelastic constants from stress relaxation experiments
.
Mechanics of Time-Dependent Materials
.
Cite
DOI
Sandeep Madireddy
,
Angel Yanguas-Gil
,
Prasanna Balaprakash
(2019).
Neuromorphic Architecture Optimization for Task-Specific Dynamic Learning
.
Proceedings of the International Conference on Neuromorphic Systems
.
Cite
Sandeep Madireddy
,
Nan and Li
,
Nesar Ramachandra
,
Prasanna Balaprakash
,
Salman Habib
(2019).
Modular Deep Learning Analysis of Galaxy-Scale Strong Lensing Images
.
Machine Learning and the Physical Sciences 2019 workshop held as a part of 33rd Conference on Neural Information Processing Systems (NeurIPS)
.
Cite
Sunwoo Lee
,
Qiao Kang
,
Sandeep Madireddy
,
Prasanna Balaprakash
,
Ankit Agrawal
,
Alok Choudhary
,
Richard Archibald
,
Wei-keng Liao
(2019).
Improving Scalability of Parallel CNN Training by Adjusting Mini-Batch Size at Run-Time
.
2019 IEEE International Conference on Big Data
.
Cite
Sandeep Madireddy
,
Prasanna Balaprakash
,
Philip Carns
,
Robert Latham
,
Robert Ross
,
Shane Snyder
,
Stefan M. Wild
(2018).
Modeling I/O Performance Variability Using Conditional Variational Autoencoders
.
2018 IEEE International Conference on Cluster Computing (CLUSTER)
.
Cite
Sandeep Madireddy
,
Prasanna Balaprakash
,
Philip Carns
,
Robert Latham
,
Robert Ross
,
Shane Snyder
,
Stefan M. Wild
(2018).
Machine Learning Based Parallel I/O Predictive Modeling: A Case Study on Lustre File Systems
.
High Performance Computing
.
Cite
Hongxiang Shi
,
Emily L. Kang
,
Bledar A. Konomi
,
Kumar Vemaganti
,
Sandeep Madireddy
(2017).
Uncertainty Quantification Using the Nearest Neighbor Gaussian Process
.
New Advances in Statistics and Data Science
.
Cite
DOI
Sandeep Madireddy
,
Prasanna Balaprakash
,
Philip Carns
,
Robert Latham
,
Robert Ross
,
Shane Snyder
,
Stefan M Wild
(2017).
Analysis and Correlation of Application I/O Performance and System-Wide I/O Activity
.
12th International Conference on Networking, Architecture, and Storage
.
Cite
Sandeep Madireddy
,
Bhargava Sista
,
Kumar Vemaganti
(2016).
Bayesian calibration of hyperelastic constitutive models of soft tissue
.
Journal of the Mechanical Behavior of Biomedical Materials
.
PDF
Cite
DOI
Sandeep Madireddy
,
Bhargava Sista
,
Kumar Vemaganti
(2015).
A Bayesian approach to selecting hyperelastic constitutive models of soft tissue
.
Computer Methods in Applied Mechanics and Engineering
.
Cite
DOI
Cite
×